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A Bayesian Method for Testing TTBT Compliance 

with Unknown Intercept and Slope 

Jangsun Baek, Henry L. Gray, Gary D. McCartor and Wayne A. Woodward 

Southern Methodist University 

Feb. 19, 1992 

Abstract 

In this report we examine the Bayesian method for testing for compliance 

to a given threshold studied by Nicholson, Mensing and Gray. It is noted that 

although this test and accompanying confidence intervals are valid for a single 

event, it is incorrect to apply it or the confidence intervals to repeated events 

at the same site unless the number of calibration events is large. Since in any 

foreseeable future the number of calibration events is likely to be small, this 

report studies the applicability of the Bayesian test in this case. The results 

suggest that in many instances the Bayesian method examined here should be 

used on repeated events with caution if the number of calibration events is less 

than three. 



1 Introduction 

Over the last few years much of the interest in yield estimation and threshold 

test ban treaty monitoring has shifted to the problem of properly monitoring 

yields that are somewhat smaller than the current test ban limit of 150 Kt. 

As a result of this interest in smaller yields it has become more important to 

include the effects of unknown slope (in the standard magnitude/yield relation) 

on estimated yields, associated confidence intervals, and related hypothesis tests. 

The most popular approach for addressing this problem thus far has been 

through the Baysian methodology. See W. L. Nicholson, R. W. Mensing and H. 

L. Gray, or R. H. Shumway and Z. A. Der for example. In each of these papers 

the authors make use of prior distributions on the parameter spaces to obtain 

estimates of yield, confidence intervals for yield, threshold type test of hypotheses, 

and associated F-numbers which allow for errors in estimating geological bias and 

slope as well as several other unknown parameters. Although such results are 

exactly what was needed in one sense they present a problem in another. That 

is, although the confidence intervals and hypothesis tests are valid when related 

to a single event from all possible parameter configurations they do not represent 

such intervals or hypothesis tests when applied repeatly to a fixed test site (This 

will be explained in detail in section 4). This problem was noted by Fisk, Gray, 

McCartor and Wilson (1991) for the case where the slope is known. 

In this report we examine the current Baysian approach to yield estimation 

from several practical aspects. That is we consider: 

1. The power of the tests for several different parameter configurations and 

yield training sets. 

2. The maximum benefit of previous no yield data regarding its contribu- 

tion to increasing the power or decreasing the F-number. 

3. The actual error rate or confidence interval (CI) that results when these 

Baysian tests or CI's are applied to repeated tests at the same site. 

Item 3 is of special interest if the number of calibration events is small and the 

particular test site is an anomaly, i.e. a site whose parameters differ substantial 
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from their corresponding Bayesian means. We shall refer to our investigation of 

item 3 as a robustness study. 

2 Notation and Background 

Let Yj denote the jth yield at a given test site and let m,j denote the ith 

magnitude associated with the jth yield, 

mij = A{ + BiW0j + etj (1) 

i = l,2,---,p and j = l,2,---,n, where WQJ = \ogYj - logF0 = Wj - 

WQ, with Wo given and the e,-j represent random errors. Further let A = 

(A\, • • •, Ap), B = (2?i, • • •, Bp), and ey = (ey, e<ij, • • •, epj)' where the prime 

denotes transpose, and the e^- are normal random vectors with mean (0,0, • • •, 0)' 

and known variance Ee. We can now write (1) in the matrix form 

mj=A + BW0j + ej. (2) 

In the model defined by Equation (1) A and B are vectors of parameters 

that depend on the test site and the particular magnitude being considered. For 

example my may refer to the jth. mj value while m^ might be the jth mL 

value. Ideally A and B in (2) would be known. This is in general not the case. 

However there may be sufficient information regarding A and B to restrict 

their possible values. That is, it is arguable that one can reasonably impose 

a probability distribution on A and B a priori. This is in fact the reasoning 

that leads to a Bayesian approach to the problem. Specifically we suppose that 

ß — (A , B ) has a prior normal distribution with known mean fio and covariance 

E^. In the future we will denote this by ß ~ N(ftß,Eß). Therefore in Equation 

(2) we no longer treat A and B as fixed parameters but as random variables or, if 

you like, "parameters" which take on their possible values with some probability. 

Now suppose n calibration events are available, ». e. n events at a given site 

for which the yields Wj are known (or at least known sufficiently well that we 

can neglect the errors in the observed Wj). Then we can determine a compliance 

test and its associated F-number which properly integrates the information in the 
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prior distribution with the data from the calibration events. This is the subject 

of the next section. 

3 A Bayesian Test of Compliance 

In order to determine a test for compliance which makes use of prior informa- 

tion regarding ß and the calibration events, we need to determine the probability 

density function (pdf) for m = mn+i given mi, 1112, • • •, mn. We will denote this 

pdf by /(m|mn), where m^ = (mi, m2, • • •, mn)'. Given n events for which the 

yields are known we wish to develop a compliance test for an (n + l)st event for 

which the yield is unknown. 

Note that the model in (2) can be written in the form 

mj = Djß + ej, j = l,2,---,n, (3) 

where 

D,= 

f\   0   •••   0   Woj      0 

0   1    •••   0      0      WQJ 

o \ 
0 

w0jJ 

= (l,W0j)®Ip 

\0   0   •••    1      0        0      • 

and ® denotes the kronecker product. 

Case 1: ß known 

The problem is a simple one when ß is known since in that event m is 

independent of the previous mi,m2, • • • ,m„, i.e. 23^ = 0. The hypothesis Ho, 

to be tested is 

Ho :  W < WT 

against (4) 

Hi : W > WT, 

where W = Wn+i. If we shorten the notation Wo}n+l t° Wc, i.e. take Wo)n+i = 

Wc we can write the hypothesis test in Equation (4) in the form 

H0: Wc< WcT 

Hi: Wc> WcT, 
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where WcT = WT - W0. In this case /(m|inn) = /(m). Now let 

P 
mr = Sr'm«' (5) 

t=l 

where the r,- are known weights with 0 < r,- < 1 and £{Li r,- = 1. It is well known 

that if ej ~ N(0, Ee), then m ~ N(Dß, Ee) where D = (1, Wc) <g> Ip, and it then 

follows at once that mr ~ NtfDß, r'Eer), where r = (rl5 r2, • • •, rp)'. Therefore, 

under HQ, we take Wc = Wcj< so that a test of the hypothesis in Equation (4) at 

the 100a: percent significance level is given by the following rule 

Reject Ho if mr > T\a, (6) 

where 

Tla = r'DT)9 + za v/r'Eer, (7) 

Dr = (l,WcT)<8)Ip, 

and za is the 100(1 -a)th percentile point of N(0,1) distribution. We shall refer 

to the test denned by the rule given by Equation (6) as Test 1. 

Case 2: ß unknown 

Of course ß is not known and therefore Test 1 cannot be used in practice. 

It does however furnish us a base line for comparison purposes. What can be 

reasonably assumed, as we have already mentioned, is that ß ~ N(fta, E«), where 

fiß and Hß are known. In this case m and nt„ are not independent and therefore 

the problem is a bit more difficult. It can however be solved by making use of 

the following theorem, the proof of which we include in the Appendix. 

Theorem 1. Let m = m„^i be a p-dimensioned magnitude related to 

Wo,n+1 = Wc by the model of Equation (3). For k = 1,2, • • •, n + 1, let rh/fc) = 

£j=l mj/K ^W{k) = E*=i Wojmj/k, and WQk = £j=i W0j/k. Suppose ß 

has the prior density N(fiß, E^). Then the probability density of m given mn, 
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/(m|ni„), is #(/*,£), where 

i-l 
E = Ee Ee — H       *^e> 

H = E{(1, We) ® Ee1}S/?[s/?+ {En+i ® (se/(n + 1))}]~ 

.{En+i®(Ee/(n + l))|   ElV/J + nfe^E"1)!   m(n)   ] 

(8) 

,    (9) 

and 

H={(l,Wc)®Ip}E^[E^+{En+i®(Ee/(n + l))}] 

. {En+1 ® (Ee/(n + l))} | (       J ®lJ , 

1 Wo.n+1 

-1 

(10) 

E„+i = 
.Wb,n+1     EJil <•/(" + !)- 

Given Theorem 1, the problem is once again trivial and we can again write 

down a 100a% significance level test. If mr is defined by Equation (5), then it 

follows from Theorem 1 that the pdf of mr given m„ is iV^/i, r'Er), where fi 

and E are given by (8) and (9) respectively. The desired test is then 

where 

Reject HQ if mr > T2a, 

T2a = r'/i + ZaVr^r, (11) 

fi and E are defined in Theorem 1 with Wc = WCT, and zQ is the 100(1 - a) 

percentile point of JV(0,1). We shall refer to the test of Equation (11) as Test 2. 

From Theorem 1 one can also obtain a confidence interval for W. For a 

general treatment of the confidence interval problem with a Bayesian prior see 

R. H. Shumway and Z. A. Der. 



4 A Constrained Bayesian Test 

In a recent report Nicholson, Mensing and Gray (1991) show how previous 

magnitude data can be used to define a Bayesian prior for ß even though the 

associated yields are not available. We shall refer to such data as "no yield" 

data as before, and we also assume that n calibration events are available. In 

this section we consider the question, "What is the maximum information that 

can be gained by this approach ?" In order to accomplish this we will consider 

the problem of the previous section but we let the number of no-yield events 

go to infinity. That is, we consider the case where the "no yield" data set is 

sufficiently large that the parameters that are estimable from that data can be 

estimated without error, i.e. they are known. By developing a test for this 

case and comparing its power to Test 2 we are able to determine the maximum 

improvement in power (or reduction in F-number) obtainable in the approach of 

Case 2. 

Specifically we note that the parameters 

c,_i = Bi/Bi, i' = 2,3,---,p 

and (12) 

/x,_l = Ai-ci_iA\, 

do not depend on yield and hence consistent estimates for c,-_i and [i(_i can be 

obtained from the "no yield" data. Thus in this case we take c,_i and m_\ as 

known, i = 2, • • • ,p. Moreover under these constraints the model of Equation (3) 

becomes 

mj=PL + VLjßl + ej, (13) 

where^i =(^1,ß1)', /iX = (0,/ii,/X2,---,^-l)'and 

/   1 ci c2       •••       cp_i 

\W0j   CIWQJ   C2WQJ    •••   cp_ iW0j, 

Thus the original 2p dimensional parameter space for ß is reduced to the 2 

dimensional one due to the constraints in Equation (12). 
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To determine a test for the model of Equation (13) we need the following 

theorem, the proof of which is included in the Appendix. 

Theorem 2. Let m = mn+l De a p-cfimensionaJ magnitude related to 

Won+1 = Wc by the model of Equation (13). Suppose ß\ = (A\,B\)' has the 

prior pdf N(m, Ei). Then the pdf of m given m„ is JV(/ic,Ec), where 

Ec = [ip - DI)n+iQ^+1Din+1Ej J    Ee, 
-In        n-l HC = I*L + EcE-^i^+iQ-^Rn, 

and 

n+1 
Qn+1 = EJ-1 + ^(Dij-E-^), 

3=1 
n 

R„ = E^Vl + £ DiiEe Vj - /<l), 
i=i 

/  1 ci c2       •••       cp_i    Y 

L,n+l~\Wc   ClWc   c2Wc   •••    Cp-iWc/ 

From Theorem 2 it follows that mr ~ i\^(r'/4c, r'Ecr) and hence a 100(a)% 

significance test of the hypothesis in Equation (4) is given by the following rule: 

Reject HQ if mr > T$a, 

where 

T3a = r'/ic + W^Ecr, (14) 

and za is the 100(1 — a) percentile point of a JV(0,1). We shall refer to the test 

of Equation (14) as Test 3. 

5 Power Curve Comparisons 

In order to assess the impact of imposing the prior information, we compare 

the power of the following tests: 
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Test 1 :      a test of hypothesis based on the assumption that the population 

parameters are known. 

Test 2 :      a test of hypothesis based on the unconstrained Bayesian ap- 

proach and the assumption that the parameters are unknown. 

Test 3 :      a test of hypothesis based on the constrained Bayesian approach 

and the assumption that the population parameters are un- 

known. 

The power at W is given by 

Pawer(W) = P(mr > Ta|mn, W). 

Also the F-number of the test is given by 

p _ IQWF-WT 

where WF is the value of the log yield at which the power is 0.5. 

Since we specified the critical values of Test 1, Test 2, and Test 3 in (7), (11), 

and (14), respectively, it is easy to show that the power of Tests 1, 2, and 3 are 

Power(W)1 = 1 - $ (za + £^)§=^) , (15) 

Power(W02 = 1 - * (^-^)^zaV?Wv\ 
\ Vr'Epyr ) 

Power(W03 = 1 - $ M^c - Kw) + W?%F\ 
V VT'2cWr /' 

where D = (1, W) <g> Ip, * is the cumulative distribution function of N(0,1), and 

{PW, Spy}, {HcW, ^cw) are defined as in Theorem 1, and Theorem 2, respec- 

tively, with W given. 

From (16) and (17) it is clear that the power of Test 2 and Test 3 depends on 

the value of iitin. Therefore in order to compare with Test 1 we generate two equiv- 

alent data sets for Test 2 and Test 3 with fixed values of {Ee,^,2^,ci,/ii,n} 

when p = 2. With the known parameter and the generated data sets, we com- 

puted the power of Test 1, Test 2, and Test 3 on the 100 equally spaced grid 

values between log 150 and log 300 for W from (15), (16), and (17), respectively 
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and Wo = log 125. We ran this simulation 20 times to get the mean of the powers 

for Test 2 and Test 3. Pawer(W)l» mean Power(W)2, and mean Power(VT)3 are 

plotted on Figure 1 through Figure 8 for various values of {Ee,Hß,E^, c\, fi\,n}. 

Now we summarize some findings from the simulation. As we can see in Fig- 

ure 1 through Figure 3, mean Power(W)2 and mean Power(W)z rapidly converge 

to Power(W)i as n gets large. Similarly average F2 and average F3 converge to 

Fi as n grows, where Fi, F2 and F3 are the F-numbers of Test 1, Test 2, and 

Test 3, respectively. 

The relatively better performance of Test 3 over Test 2 is observed regardless 

of the values of c\ in Figure 1 and Figure 4. However, Figure 5 and Figure 6 

show that the overperformance of Test 3 against Test 2 diminishes as the standard 

deviations of A2 and B<i ((TA2,^B2) decrease to those of A\ and B\, respectively. 

Figure 7 and Figure 8 show the same phenomenon as <rC2 becomes small enough 

to be similar to aty. Thus it would appear that if the values used here for ftß, E^ 

and Ee are representative, additional no yield data would be of little value. 

6 Robustness 

In the previous sections we have developed a test of the hypothesis of com- 

pliance of the (n + l)st event given n calibration events when ß is unknown. We 

referred to this as Test 2. In making use of this test it is important to under- 

stand the nature of the false alarm rate or significance level a. Possibly the best 

way to interpret a is to think through a simulation for estimating a. In order 

to simulate the process one would first generate ß from N(fiß^ß) and then, 

given ß and Wt-, t = l,---,n, generate ei,e2,---,e„ to obtain m„. Now let- 

ting Wn+\ = log 150 and generating en+i to obtain mn+i, one would apply the 

test and note the decision. This simulates the senario of obtaining n calibration 

events and one additional event of unknown yield. This entire process would be 

repeated a large number of times and the proportion of incorrect decisions would 

approach a. Table 1 below describes the method. The ßi denote the values of 

ß generated on simulation # i. Let mr(T1+i(t) = r^mj^+i, where mj)T1+i is the 
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(n + l)st magnitude vector generated in the ith simulation, i = 1,2, • • •, /. 

Table 1. Simulation procedure for estimating the false alarm rate 

Simulation # 1 Simulation # 2 Simulation # / 

Given A,Wi," -,Wn faWu — ,Wn 

Generate        mn,---,mi„ m2i,---,m2n 

Generate mi>n+i,W = log 150 m2in+i,W = log 150 

Decision             Reject if Reject if 

mr>n+i(l) > r2a(l) mrfB+i(2) > T2a(2) 

m/,n+l.^ = logl50 

Reject if 

mr>B+i(/) > T2a(l) 

Now, if we define a random variable X such that X = 1 if mr>n+i(j) > T2a(j), 

and otherwise Jf = 0, it follows that 

a=Hm S^Xj 1= lim X, a.s. 

We should note, however, that in practice the application of these tests will 

be to events mn+i,m„4.2,-- -,mn+s at the same site. That is, what is needed 

is essentially a test so that the empirical false alarm rate or significance level 

approaches a as s gets large rather than as / gets large. We shall refer to the 

sample false alarm rate as s —► oo as the "actual significance level" or "actual 

false alarm rate" and denote it by a(mn|n,jö). Thus 

a(r3„|n,0) = P(mn+S > T2a|m„, W„+s = log 150,0) (18) 

It can be shown that 

= Urn (# of mn+k > T2a)/k. 

lim a(nt„|n,/9) = a. 

Thus when n is large, a(mn\n,ß) « a regardless of the observed value of ß. 

However in most instances n will be small and therefore the question which 

arrises is, "How robust is a to small values of n and unusual values of ß, i.e. 

values of ß far removed from fiß ?"   That is, "How close is a to a(mn\n,ß), 

11 



the actual false alarm rate, when n is small and ß is substantially different from 

HßT 
In addition to the "actual false alarm rate" we need to obtain the probability 

of rejecting HQ as s —► oo. We shall refer to this as the "actual power" or the 

"actual probability of detection", and denote it by P(W\n,ß). Thus 

P(W\n,ß) = P(mn+a > T2a\v&„J,Wn+, = W) (19) 

= lim (# of mn+k > T2a)/k. 
«—►00 

Then it also can be shown that 

lim P(W\n,ß) = PoweT(W). 

From (18) and (19) it is clear that a(mn\n,ß) and P(W\n,ß) depend on mR. 

Thus for every sample of mn these quantities will be different. We can however 

estimate E[a(mn\n,ß)] and E[P(W\n,ß)] for various values of ß and n. This is 

the topic of the remaining portion of this section. 

In order to investigate the robustness of the actual false alarm rate, 

a(rnn\n, /?), a small simulation was performed for a variety of values of n and ß. 

Specifically, taking p = 2,fiß = (/Mj,/^,^,/^)' = (Mfl.l)'» <*AX = *A3 = 

^Bi = °B2 ~ °-05> PA = PB = 0.5, PAB = 0, ffei = <^e2 = 0.05, pe = 0.5, W = 

log 150 and Wo = log 125, we considered the cases 

0 = /*/? + <?• (^,^,0,0)', 

where C = 0,±1, ±2, for n = 1,2,3,5,10 and 100. 

For each case a value of m„+i was obtained 10,000 times (or equivalently 

mn.f,-, t = 1, • • •, 10,000 was obtained) and a(mn|n,/?) was estimated by 

Ä/_+ .     ..      # of rejections ,ääS 
6&.\n,n~*   10

]
000      • (20) 

As already noted a(xnn\n,ß) depends on m„ and clearly the same is true about 

&(mn\n,ß). Therefore a reasonable measure of the robustness of Test 2 when n 

is small is the E[a(nin\n,ß)] = /ia. To obtain an estimate of fia, for each case 

we generated 20 repetitions of a(mn\n,ß), i.e. 

1   2°       _♦ V<* = ^^2&iC^n\nJ). (21) 
20 ,=. 
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The results of these simulations are given in Table 2 for a = 0.025. It is worth 

noting the relatively large standard deviation of a(mn\n,ß). In view of the val- 

ues of fia one can conclude that the distribution of a(mn\n,ß) is quite skewed 

to the right or at least contains some extreme values on the right side. That 

is, values of a(mn\n,ß) much larger than jxa are more frequent than values of 

a(tnn\n,ß) less than /xa, or substantially larger values of a(mn\n,ß) than p,Q 

may not be unusual. Since a(tnn\n,ß) is obtained from 10,000 repetitions, it fol- 

lows that a(mn\n,ß) « a(mn\n,ß). So similar remarks can be made regarding 

a(mn\n,ß). The result of this is that Table 2 presents these results in a conser- 

vative way since most people would interpret the mean as a typical value of the 

false alarm rate. What we are cautioning here is that, in fact false alarm rates 

substantially larger than the mean values shown in Table 2 will be much more 

common than in a symmetric distribution. We probably should have included 

the median in Table 2, but that was not calculated. 

It should be noted that if C < 0, the Bayesian estimator of yield will un- 

derestimate yield and hence the true false alarm rate will be too small while if 

C > 0 the estimator will overestimate yield and hence the false alarm rate will 

be too large. From inspection of Table 2, it appears that if we have only 1 or 2 

calibration events, this effect can be large, and hence in this case the Bayesian 

significance level or CI may be seriously in error. On the other hand if n > 5 the 

method might be considered adequate, even though for C < 0 the false alarm 

rate may still be sufficiently too small that it could very adversely effect the 

power, i.e. the chances of detecting a violation. 

Power Considerations 

Figures 1 - 8 compare the power of Test 1, Test 2, and Test 3 for various 

parameter configurations. As in the case of the false alarm rate, if these parame- 

ter values are representative, little is to be gained from additional no yield data. 

Also, from the comparison of the F-numbers it does not appear that a great deal 

is to be gained by taking n > 2. Unfortunately these rather pleasant results do 

not uniformly extend to the actual power. 
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Figure 9 through Figure 36 compare the "actual" power of Test 2 to the 

power of Test 2, i.e. they compare P(W|n, ß) to P(W). The figures also compare 

the F-number for Test 2 to the "actual" F-number. For n < 2 it is clear that 

both the power and the F-number are seriously effected if C = ±2 and the same 

is true for C = ±1 if n = 1. It should be pointed out that the small F-numbers 

associated with C < 0 are a result of very large false alarm rates and should not 

be viewed as improved tests. 

Concluding Remarks 

In this report we have investigated the robustness of the Bayesian method 

(referred to as Test 2) for testing compliance of an observed yield to a threshold. 

Although the simulations reported here were not exhaustive, they were adequate 

to demonstrate that the Bayesian method for testing compliance is probably not 

satisfactory if there are only one or two calibration events. Moreover it is highly 

desirable to have five or more calibration events to guarantee good agreenent 

with the stated significance level. Similar remarks could be made regarding the 

corresponding confidence intervals. 

The consequence of these findings is that if it is unlikely that several cali- 

bration events will be available, Test 2 and confidence intervals associated with 

Test 2, the Bayesian tests and CI discussed by Nicholson, Mensing and Gray, and 

those introduced by Shumway and Der should be used with care. In fact if the 

number of calibration events is less than 3 it would probably be wise to consider 

a constrained likelihood method as an alternative to the Bayesian method, or, if 

possible, the Bayesian method should be extended to include the case of several 

events following the calibration events. 
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Table 2. Estimate of Actual False Alarm Rate E[a(n,ß)], a = 0.025 

C = -2     C = -l      C = 0      C = l C = 2 

Aa 0.0000 

st. dev. fia 0.0000 

st. dev. a(mn\n,ß) 0.0000 

£a 0.0006 

st. dev. jia 0.0003 

st. dev. a(mn\n,ß) 0.0012 

£a 0.0034 

st. dev. /ia 0.0014 

st. dev. d(m„|n,/9) 0.0062 

£a 0.0046 

st. dev. fia 0.0018 

st. dev. a(mn\n,ß) 0.0079 

/ia 0.0076 

st. dev. fia 0.0019 

st. dev. a(mn\n,ß) 0.0084 

Aa 0.0119 

st. dev. fia 0.0017 

st. dev. d(m„|n,/9) 0.0075 

/xa 0.0229 

st. dev. fia 0.0015 

st. dev. a(tnn\n,ß) 0.0065 

n = 0 

0.0000 0.0023 0.0488 0.3165 

0.0000 0.0001 0.0006 0.0011 

0.0000 0.0004 

n = l 

0.0025 0.0050 

0.0034 0.0149 0.0532 0.1418* 

0.0013 0.0044 0.0112 0.0205 

0.0058 0.0197 

n = 2 

0.0499 0.0919 

0.0089 0.0225 0.0498 0.0985 

0.0030 0.0061 0.0107 0.0173 

0.0132 0.0273 

n = 3 

0.0479 0.0774 

0.0099 0.0193 0.0364 0.0643 

0.0033 0.0055 0.0087 0.0132 

0.0146 0.0246 

n = 5 

0.0389 0.0592 

0.0121 0.0192 0.0283 0.0425 

0.0029 0.0042 0.0058 0.0081 

0.0128 0.0190 

n = 10 

0.0259 0.0363 

0.0155 0.0201 0.0255 0.0316 

0.0025 0.0030 0.0034 0.0040 

0.0110 0.0132 

n = 100 

0.0152 0.0179 

0.0230 0.0234 0.0238 0.0240 

0.0013 0.0016 0.0014 0.0015 

0.0058 0.0072 0.0063 0.0065 
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* note: For symetric confidence intervals a 100(1 — 2a)% two sided confidence 

interval corresponds to a one sided a—level significance test. For example, for 

Test 1 of size 0.025, the corresponding two sided confidence interval is a 95% 

C.I. This suggests that if the "actual" significance level is 0.14, the actual C.I. 

could be a 72% C.I. That is, if the site geological bias is 2<r greater than the 

expected bias, \i£, then even though the Bayesian significance level is 0.025 and 

the Bayesian C.I. is 0.95, the actual significance level is estimated here as 0.14 

and one would assume that the actual two sided C.I. is around 72%. 
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APPENDIX: PROOFS 

Proof of Theorem 1 

For the new observation m related to Wc, the conditional pdf of m given 

iitin, /(m|mn) is as follows: 

f(m\ttLn) = J fi(mj\vtn)dß 

= J f2(m\ßA)h(ß\mn)dß 

f2(m\ß)fz(ß\^n)dß, (Al) 
/ 

where /i,/2, and /3 are the probability densities. The last equation is obtained 

due to the independence between m and in„ when ß is given. The conditional 

distribution of ß given mn may be computed using Bayes' law as follows: 

Mfi\^)=l
hUW^"W    ■ (A2) 

j h(ß)L(T&„\ß)dß ' 

where h is the prior density of the parameter vector ß and L is the likelihood 

function for the data mn, given values of ß.  If we assume ej are independent 

multivariate normal, then 

n 

L(^n\ß) = H^mj\ß\ 
3=1 

where 

rKmjW = (27r)-P|Ee|-
1/2exp{ - I(m,- - D^/E^m; - D^)}. 

Note 

f2(m\ß)L(nln\ß) = L(^n+1\ß,mn+l = m,Wn+1 = Wc) 

since e^ are independent. Thus referring to (Al) and (A2) leads to 

/(mlm-n) = .W)£("*"+llftm"+l = m>Wn+l = Wc)dß 
f h(ß)L(xän\ß)dß 

Thus if h(ß) is available, / is completely determined. 
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Note 

h(ß)L(TZn\ß) oc cxp[-±{(ß--ltß)'Vß1(ß-»ß) 

+ ^(mi-D^)VK-D^)} 

The exponential of (A3) is -1/2 times 

(A3) 

;=i 

Let W0n = E"=l W0j/n. Since D; = (1, Woj) 0 Ip, 

(A4) 

2DJB"^ = E ((1. Wbi)' ® IP)2e*((1, Wbi) ® Ip) 
i=i i=i 

-tff1 *iW) 
'e 

-1 
0 (Ee/n) 

IV Won    £?=!</"/ V ' 

= JE„ 0 (Ee/n) }     , 

= < 

-1 

where -1 

En 

1 w0n 

Let ih(n) = YJj=\ mj/n and "V(n) = £j=l Wojtnj/n. Then Jt is easy to 

verify that 

E npe^j = Hn)^W(n)) (*2 ® (Se/n)"1). 
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We can rewrite (A4) as follows: 

0 [E^
1
 + {En 0 (Ee/n) }" ]ß - 2 [jfö1 + (m'(n), m^(n)) 

—1 n 

• (l2 0 (se/n)    )] 0 + ^E^/i/J + 53 mJEe lmi 
i=i 

= (0 - Zn)' [E^1 + {En 0 (Ee/n) }_1] (^ - Z„) 
-In 

Z'„ [E^1 + {En 0 (Ee/n) }     ] Z„ + ^E^ + £ mJ^lm. lj> 

where 

Z« = 
-1-1-1 

n= [E^ + {En®(Ee/n)}   ']   l   Ttfpß + {l2 0 (Ee/n)   *} (   "^ 

Since -(l/2)(0 - Z^E*1 + {E„ 0 (Ee/n)}_1](0 - Z„) is the exponential 

of the multivariate normal density with mean Zn and variance [Eä + {En 0 

(Ee/n)}-1]"1, and / exp[-(l/2)(ß - Zn)'[E^ + {E„ 0 (Ee/n)}"1]^ - Zn))dß 

is a constant, it can be shown that 

J h(ß)L(TÄn\ß)dß oc exp[ - (l/2){ - Z'n [E^
1
 + {E„ 0 (Ee/n) }_1]z„ 

n 
+ ^E-1^ + Em;E-1mi}]. 

i=i 

For the new observation m, let /(m|m„) be the conditional density of m 

given mn in the unconstrained case. Then 

/(m|m„) = 
f h(ß)L(iZn+i\ß,mn+i = m,Wb,n+l = We)dß 

oc exp 

f h(ß)L(xZn\ß)dß 

- (l/2){ - Z'B+1 [E^1 + {En+1 ® (Ee/(n + 1)) }_1] Zn+1 

+ Z'n [E^1 + {En 0 (Ee/n) }_1] Z„ + m'E-1™}], (A5) 
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where 

Zn+1 = R-n+i E^+{l2®(=e/(n + l))   ^(P""^ 
.mW(n+l) 

Rn+1 = E^1 + {En+i ® (Ee/(n +1)) }    , 

En+1"Uo,n+l     E3ilX'/(» + 1)/      ' 
n+1 

i=i 
n+1 

™»T(n+l) = J2 W0jmj/(n + 1), 
i=l 
n+1 

^0,n+l = £ ^0j7(" + 1), 
J=l 

with mn+i = m and Wo,n+l = Wc- 

Note 

m(n+l) = (n/(n + l))«»(n) + (V(n + l))m 

m^(„+i) = (n/(n + l))nV(n) + (wc/(n + l))m. 

Then 

® m. 
Wc 

-li 

Therefore the exponential of (A5) is —1/2 times 

- M'n+1Rn+iMn+i + Z'n [E^
1
 + {E„ ® (Ee/n)p]z„ - /I'E"

1
/* 

(m-^E-^m-zi), (A.6) + 
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where 

Mn+i = Rn |j V^ + («A» + 1)) {h ® (WC« + 1))   ' } f  ^^ 

E = So Ee — H 
l-l 

mW(n) / J 

Be, 

with 

/i = E{(l,Wc)®E-1}E/,[E^+{En+1®(Ee/(n + l))}]   * 

.{En+i®(Ee/(n + l))}   E^V/J + nfc^S-1)^  "^    )    , 
L \ mW(n) ) . 

H = {(1, Wc) ® IP}S^ [fy + {En+1 ® (Ee/(n + 1)) }] "1 

{EB+i®(Ee/(n + l))}|f ®\v\- 

Since the first three terms in (A6) are not function of m, which are constants, 

the theorem holds. 

Proof of Theorem 2 

Note the distribution of nij given ß\ is the multivariate normal with mean 

PL + ^Ljßl an(i variance Ee. 

h{ßi)I4&n\ßl) oc exp[ - (l/2){(/*i - /ii/E^l " Ml) 
n 

+ E(mJ " ^ - I>Ljßl)'2e\™j -ML- Djyft)}] .(A7) 
3=1 

The exponential of (A7) is —1/2 times 

(ßl ~ Z»y [Sr1 + £ (ü^D^)] (ft - Z„) - Z'n [EJ-I + £ (D^-E-^^)] 
i=i 

n 

i=i 

i=l 

where 

Z„ = 
i-l 

V+E (P'LJ^^LJ))' [=rVi+EDi;EeV; -^)' • 
i=i i=i 
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Hence 

J h{ßl)L{^n\ßl)dßl 

(l/2){ - Z'n [EJ-1 + £ (D^D^JZ» oc exp 

J=l 

For the new observation m, let /c(m|ntn) be the conditional density of m 

given mn in the constrained case. Then 

f h(ßi)L(mn+i\ßi,mn+i = m, W0)n+1 = We)dßi 
/c(m|m„) = 

n+1 
ex exp[ - (1/2){ - Z'B+1 [EJ-1 + £ (D^E"1^)] Zn+1 

i=i 

+ Z'n [^r1 + E (DliEe ^Lj)] Zn + (m - /i^E'V - |IL)}], 

(A8) 

DX,n+l = 

where Zn_|.i is defined as Zn with mn+i = m, and 

1        c\ C2       •••      cp_i 

,WC ci^c c2Wc ••• Cp-iWc 

For A; = l,2,---,n + 1, let Rk = E^Vl + £*=i DijSe Hmj ~ 0L)I 
and let 

Q* = Sr^EjtiCD^E-iD^)- Then with Zn+1 = Rn+D^E-^m-iij), 
it is easy to show that (A8) is 

exp [ - (l/2){ - R'nQ^Rn + Z'nQ„Z„ + (m - HL)' [E"
1
 - E^D^+iQ"^ 

■ Di,n+iSe*] (m - /iL) - 2R'nQ^1Di)„+1E-1(m - |iL)}] 

oc exp[ - (l/2){(m - /ic/E^m - /ic)}], 

where 

Ec = [lp - D^+xQ-^D'^E-1] _1Ee, 

Hc = ML + VcVe1VL,n+lQnllR«- 

The last result is obtained because Qn, Qn+i,Rn, and Zn are not function of m. 
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